

The use of AP-MALDI for structural insight into viral envelope lipids and other biomedical applications

7-June-2022 Jace W. Jones, Ph.D. Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland

Zoonotic Enveloped Viruses are a Significant Current and Future Public Health Threat

Viral Envelope: intimately tied to the virus's ability to successfully replicate

- Entry (fusion)
- Assembly
- Exit (budding)
- Protection

Image Credit: vchal / Shutterstock

- Zoonotic viral diseases represent a serious and imminent threat to public health
- Top list of emerging pathogens are zoonotic enveloped viruses (e.g., Ebola, Nipah, Lassa fever, MERS, and SARS)¹.

Rapid Lipid Detection: MALDI MS

Rapid Lipid Detection: MALDI MS

Rapid Lipid Detection: MALDI MS

Detection Enrichment with Lithium Adduct Consolidation

High Resolution Mass Spectrometry: AP MALDI

http://apmaldi.com/

AP-MALDI HRMS with DHB

Lipids from IVA virions

AP-MALDI HRMS with THAP+Li

Lipids from IVA virions

Identification:

- HexCer: 44
- SM: 21

High Resolution Mass Spectrometry: AP MALDI

AP-MALDI is compatible with high resolution mass spectrometry

Li Adducts provide extensive fragmentation via Tandem MS

Tandem MS of [M+Li]⁺ HexCer and hydroxylated HexCer

m/z	ID	lon	Intensity	Lipid ID
722.5692	HexCer(d34:1-OH)	[M+Li]+	565	HexCer(d34:1-OH)*
778.6314	HexCer(d38:1-OH)	[M+Li]+	4389	HexCer(d18:1/20:0(2-OH))
806.6624	HexCer(d40:1-OH)	[M+Li]+	18733	HexCer(d18:1/22:0(2-OH))
820.6776	HexCer(d41:1-OH)	[M+Li]+	3278	HexCer(d18:1/23:0(2-OH))
834.6934	HexCer(d42:1-OH)	[M+Li]+	19231	HexCer(d18:1/24:0(2-OH))
862.7243	HexCer(d44:1-OH)	[M+Li]+	5110	HexCer(d18:1/26:0(2-OH))

m/z	ID	lon	Intensity	Lipid ID
706.5742	HexCer(d34:1)	[M+Li]+	7876	HexCer(d18:1/16:0)
762.6366	HexCer(d38:1)	[M+Li]+	5492	HexCer(d18:1/20:0)
790.6675	HexCer(d40:1)	[M+Li]+	13421	HexCer(d18:1/22:0)
804.6827	HexCer(d41:1)	[M+Li]+	1961	HexCer(d18:1/23:0)
818.6986	HexCer(d42:1)	[M+Li]+	16913	HexCer(d18:1/24:0)
846.7295	HexCer(d44:1)	[M+Li]+	3747	HexCer(d18:1/26:0)

High resolution mass spectrometry doesn't resolve isomers

AP MALDI Configured to Agilent 6560: Drift Tube Ion Mobility

HRdm enables gas-phase separation of isomeric HexCer

- Agilent DT-IM-QTOF 6560
- Separation based on collision cross section (CCS) and charge
- Direct CCS calculation
- Resolution: ~150 (with HRdm)

HRdm enables gas-phase separation of isomeric HexCer from IVA virions

HRdm enables gas-phase separation of isomeric HexCer from IVA virions

AP MALDI-6560 Spot Analysis Example

AP MALDI-6560 Mass Spec Imaging Example

160

120 140

80 100

X. pixel numbe

Drift spectra across tissue detailing differential spatial localization of isomeric species (m/z 760.5927) IM Resolution > 130

Drift Spectrum: (760.3974-760.8077 m/z) (1.104-1.205 min) - Br...

Drift Spectrum: (759.9969-761.8194 m/z) (1.981-2.099 min) - Br...

20

Acknowledgements

Jones Laboratory (UMB SOP)

Anh Tran Yulemni Morel Yuanyuan Ji Ahmed M. Abdel-Megied Ali (former post-doc)

UNIVERSITY of MARYLAND School of Pharmacy mass spectrometry center

MassTech Inc.

Eugene Moskovets Konstantin Novoselov Nivedita Bhattacharya Venkat Panchagnula Agilent

Agilent Technologies

Daniel Cuthbertson John Fjeldsted Sarah Stow John Sausen Xi Qiu

<u>SpectroSwiss</u>

www.jacewjoneslab.com

Konstantin Nagarnov Yuri Tsybin

Jones Lab

Funding:

- UMB SOP start-up funds
- University of Maryland School of Pharmacy Mass Spectrometry Center (SOP1841-IQB2013)
- R21NS117867 (Sarkar/Jones)
- R01NS115876 (Lipinski)
- R21AI156731 (Aguliar-Carreno)
- Agilent Research Gift #4520
- MassTech Research Contract

Venkat Panchagnula

Poster WP276: Imaging with AP-MALDI on 3Q and IM-QTOF

Poster TP349: Y Morel, Characterization of Oxidized phospholipids

Poster TP351: A Tran, Structural analysis of sphingolipids

Aguilar-Carreno Lab (Cornell University)

Hector Aguilar-Carreno Isaac Monreal

Kane Laboratory (UMB PSC)

Maureen A. Kane Ludovic Muller Andrew (Temple) Williams